skip to main content


Search for: All records

Creators/Authors contains: "Rapp, Markus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The southern part of South America and the Antarctic peninsula are known as the world’s strongest hotspot region of stratospheric gravity wave (GW) activity. Large tropospheric winds are deflected by the Andes and the Antarctic Peninsula and excite GWs that might propagate into the upper mesosphere. Satellite observations show large stratospheric GW activity above the mountains, the Drake Passage, and in a belt centered along 60°S. This scientifically highly interesting region for studying GW dynamics was the focus of the Southern Hemisphere Transport, Dynamics, and Chemistry–Gravity Waves (SOUTHTRAC-GW) mission. The German High Altitude and Long Range Research Aircraft (HALO) was deployed to Rio Grande at the southern tip of Argentina in September 2019. Seven dedicated research flights with a typical length of 7,000 km were conducted to collect GW observations with the novel Airborne Lidar for Middle Atmosphere research (ALIMA) instrument and the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) limb sounder. While ALIMA measures temperatures in the altitude range from 20 to 90 km, GLORIA observations allow characterization of temperatures and trace gas mixing ratios from 5 to 15 km. Wave perturbations are derived by subtracting suitable mean profiles. This paper summarizes the motivations and objectives of the SOUTHTRAC-GW mission. The evolution of the atmospheric conditions is documented including the effect of the extraordinary Southern Hemisphere sudden stratospheric warming (SSW) that occurred in early September 2019. Moreover, outstanding initial results of the GW observation and plans for future work are presented. 
    more » « less
  2. Abstract. In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the mesosphere–lower thermosphere (MLT) region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside turbulence layers shows two different spectral behaviors, which might imply a change in its diffusion properties. 
    more » « less
  3. Abstract

    A remarkable, large‐amplitude, mountain wave (MW) breaking event was observed on the night of 21 June 2014 by ground‐based optical instruments operated on the New Zealand South Island during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Concurrent measurements of the MW structures, amplitudes, and background environment were made using an Advanced Mesospheric Temperature Mapper, a Rayleigh Lidar, an All‐Sky Imager, and a Fabry‐Perot Interferometer. The MW event was observed primarily in the OH airglow emission layer at an altitude of ~82 km, over an ~2‐hr interval (~10:30–12:30 UT), during strong eastward winds at the OH altitude and above, which weakened with time. The MWs displayed dominant horizontal wavelengths ranging from ~40 to 70 km and temperature perturbation amplitudes as large as ~35 K. The waves were characterized by an unusual, “saw‐tooth” pattern in the larger‐scale temperature field exhibiting narrow cold phases separating much broader warm phases with increasing temperatures toward the east, indicative of strong overturning and instability development. Estimates of the momentum fluxes during this event revealed a distinct periodicity (~25 min) with three well‐defined peaks ranging from ~600 to 800 m2/s2, among the largest ever inferred at these altitudes. These results suggest that MW forcing at small horizontal scales (<100 km) can play large roles in the momentum budget of the mesopause region when forcing and propagation conditions allow them to reach mesospheric altitudes with large amplitudes. A detailed analysis of the instability dynamics accompanying this breaking MW event is presented in a companion paper, Fritts et al. (2019,https://doi.org/10.1029/2019jd030899).

     
    more » « less
  4. Abstract

    The Polar Mesospheric Cloud Turbulence (PMC Turbo) experiment was designed to observe and quantify the dynamics of small‐scale gravity waves (GWs) and instabilities leading to turbulence in the upper mesosphere during polar summer using instruments aboard a stratospheric balloon. The PMC Turbo scientific payload comprised seven high‐resolution cameras and a Rayleigh lidar. Overlapping wide and narrow camera field of views from the balloon altitude of ~38 km enabled resolution of features extending from ~20 m to ~100 km at the PMC layer altitude of ~82 km. The Rayleigh lidar provided profiles of temperature below the PMC altitudes and of the PMCs throughout the flight. PMCs were imaged during an ~5.9‐day flight from Esrange, Sweden, to Northern Canada in July 2018. These data reveal sensitivity of the PMCs and the dynamics driving their structure and variability to tropospheric weather and larger‐scale GWs and tides at the PMC altitudes. Initial results reveal strong modulation of PMC presence and brightness by larger‐scale waves, significant variability in the occurrence of GWs and instability dynamics on time scales of hours, and a diversity of small‐scale dynamics leading to instabilities and turbulence at smaller scales. At multiple times, the overall field of view was dominated by extensive and nearly continuous GWs and instabilities at horizontal scales from ~2 to 100 km, suggesting sustained turbulence generation and persistence. At other times, GWs were less pronounced and instabilities were localized and/or weaker, but not absent. An overview of the PMC Turbo experiment motivations, scientific goals, and initial results is presented here.

     
    more » « less